Corrosion Control Treatment

BASIC FEASIBILITY STUDY

COMMONWEALTH OF PENNSYLVANIA Department of Environmental Protection

For more information, visit DEP directly at <u>www.dep.state.pa.us</u> or through the PA PowerPort at <u>www.state.pa.us</u>

DEPARTMENT OF ENVIRONMENTAL PROTECTION Bureau of Water Supply and Wastewater Management

Document Number:	383-3000-307
Title:	Corrosion Control Treatment - Basic Feasibility Study
Effective Date:	October 1, 1997 Minor changes were made on pages i, 5, 6, 8, 12, and 14 (May 3, 2001).
Authority:	Pennsylvania's Safe Drinking Water Act (35 P.S. §721.1 <i>et seq.</i>) and regulations at 25 Pa. Code Chapter 109.
Policy:	Department of Environmental Protection (DEP) staff will follow the guidance and procedures presented in this document to direct and support implementation of all large systems and medium and small water systems that exceed either the lead or copper action level under the drinking water management programs.
Purpose:	The purpose of this document is to establish a rational and reasonable basis for staff decisions which will promote quality, timely and consistent service to the public and regulated community.
Applicability:	This guidance will apply to all large systems and medium and small water systems that exceed either the lead or copper action level.
Disclaimer:	This guidance and procedures outlined in this document are intended to supplement existing requirements. Nothing in this document shall affect more stringent regulatory requirements.
	The guidance and procedures herein are not an adjudication or a regulation. There is no intent on the part of DEP to give this document that weight or deference. The guidance and procedures merely explain how and on what basis DEP will administer and implement its responsibilities with respect to all large systems and medium and small water systems that exceed either the lead or copper action level. DEP reserves the discretion to deviate from the guidance and procedures in this document if circumstances warrant.
Page Length:	21 pages
Location:	Volume 21, Tab 04
Definitions:	See 25 Pa. Code Chapter 109

CORROSION CONTROL TREATMENT BASIC FEASIBILITY STUDY

BACKGROUND

The Lead and Copper Rule (LCR) requires all large systems and medium and small systems that exceed either the lead or copper action level to prepare corrosion control treatment (CCT) feasibility studies. Large systems must complete and submit their studies to the Department of Environmental Protection (DEP) by June 1994. Studies for medium or small systems must be submitted within 18 months of the date the action level was exceeded.

DEP encourages systems to conduct desktop evaluations of treatment alternatives with emphasis on the use of data from systems with successful corrosion control under analogous conditions. This basic feasibility study guide includes a desktop evaluation form and describes additional information required for a complete study. A water supplier that prepares a complete basic feasibility study in accordance with these instructions will generally comply with the LCR requirements pertaining to CCT studies, select the most feasible alternative, minimize the cost impact of treatment, and, in most cases, eliminate the need for demonstration testing.

PURPOSE

The purpose of the basic feasibility study is to identify corrosion control priorities, evaluate viable corrosion control approaches and select the optimal corrosion control treatment in a simplified format.

CONTENT

As a minimum, the system shall include the information required in a basic study described as follows:

- 1. A sample site location plan for lead and copper tap and water quality parameter monitoring.
- 2. A summary of all lead and copper and water quality parameter monitoring results. These results should be evaluated considering the location of sample sites within the distribution system and used as the basis for considering corrosion control treatment options.
- 3. A desktop evaluation of alkalinity and pH adjustment, calcium hardness adjustment, and corrosion inhibitor addition or a combination of these treatments. If source water treatment is needed to achieve optimal corrosion control, the water supplier shall evaluate the source water treatments including ion exchange, reverse osmosis, lime softening and coagulation/filtration. The evaluation shall recommend optimal corrosion control treatment and water quality parameter performance requirements for the selected treatment.
- 4. A proposed schedule for completion of the remaining corrosion control treatment compliance steps including, but not limited to, treatment design and permit application submittal, financing and construction, and initiation of operation.

DESKTOP EVALUATION FORM

To comply with the LCR requirements for CCT feasibility studies, the attached form may be completed and returned to DEP along with the above mentioned items.

Prior to beginning the desktop evaluation, the water supplier should consider the following:

- 1. The desktop evaluation form is intended to allow the user to review alternative treatments to achieve optimal corrosion control. In a step-by-step fashion, the form is designed to guide the user in compiling all the necessary information needed for this evaluation. The evaluation is intended to be a selective process whereby options are narrowed down based on theory, actual system operation and constraints.
- 2. All of the information requested on the first 13 pages, unless stated otherwise, must be completed in order to fully evaluate each treatment alternative. Final treatment recommendations are located on page 14. Indicate the recommendation that applies for your system and complete the remaining sections. A combination of treatment methods may be necessary to achieve optimal corrosion control.
- 3. At least two of the following resources should be utilized to support your recommendations:
 - DEP Analogous Treatment Program
 - Computer Model(s)
 - Engineering Report or Consultant Study
 - Literature
 - Internal Study
 - CCT Jar Testing

Reports or summaries shall be attached to the form where applicable.

- 4. CCT jar testing is an important resource that can indicate to the user whether certain ranges of water quality parameters can be obtained with the recommended chemical and at what dosages. Jar testing involves treatment of a raw water sample with the addition of the selected chemical until the desired water quality parameter range has been reached. For most closed systems, the test should be conducted using a dissolved oxygen bottle. Jar testing may be performed in-house or by a consultant (laboratory or engineer).
- 5. References.

USEPA. Drinking Water Regulations: Maximum Contaminant Level Goals and National Primary Drinking Water Regulations for Lead and Copper, 40 CFR Parts 141 and 142.

USEPA. 1992. Lead and Copper Rule Guidance Manual - Volume 2: Corrosion Control Treatment. Office of Ground Water and Drinking Water (Washington, D.C.). EPA 811-B-92-002.

AFTER THE STUDY IS COMPLETED

Water suppliers should submit the completed basic feasibility study to the DEP Regional Office serving the county where the water system is located. DEP water supply staff will review the study for completeness and technical merit and issue an approval upon correction of any deficiencies. DEP may require demonstration testing, which usually involves bench or full-scale testing using pipe loops or metal coupons, when a thorough desktop evaluation does not provide a confident treatment recommendation.

Following study approval, the water supplier must submit a construction permit application including plans and specifications for the CCT design. Large systems must submit a construction permit application by March 31, 1995. Medium and small systems must submit their construction permit application within 30 months of exceeding an action level. The facilities design should be based on the recommendations made in the feasibility study. Construction permit approval gives permission for the CCT facilities to be constructed. Contact the DEP Regional Office for more detailed information on permit requirements.

CORROSION CONTROL TREATMENT BASIC DESKTOP EVALUATION FORM

A. PWS GENERAL INFORMATION

1.	PWS Identification No.:
	System Name:
2.	Contact Person
	Name:
	Mailing Address:
	Telephone No.:
3.	Population Served:
4.	Type of System:
	Groundwater Surface Water Consecutive
5.	Average Daily Usage TGD
6.	Person responsible for preparing this form:
	Name:
	Signature:
	Telephone No.:

B. MONITORING RESULTS

1.	Sampling Dates: From	То		
2.	First-Draw Tap Monitoring Results: Lead:			
	Minimum concentration =	m	g/L	
	Maximum concentration =		g/L	
	90 th percentile =	m	g/L	
	Copper:			
			g/L	
	a oth th		g/L	
	90 th percentile =	m	g/L	
3.	Entry Point Monitoring Results:			
		Entry	Point #	
	Lead concentration, mg/L			
	Copper concentration, mg/L			
	*рН			
	*Temperature, °C			
	Alkalinity, mg/L as CaCO ₃			
	Calcium, mg/L as CaCO ₃	<u> </u>	<u> </u>	
	Conductivity, umho/cm @ 25 °C	<u> </u>	<u> </u>	
	Orthophosphate, mg/L as PO ₄			
	(if phosphate-based inhibitor used) Silica, mg/L as SiO ₂			
	(if silica-based inhibitor used)			
4.	Water Quality Parameter Distribution System	Monitoring Dowl	ta.	
4.	water Quanty Farameter Distribution System	Monitoring Kesui	15.	
		Minimum	Maximum	Average
	*pH			
	Alkalinity, mg/L as CaCO ₃			
	*Temperature, °C			
	Calcium, mg/L as CaCO ₃			
	Conductivity, umho/cm @ 25 °C Orthophosphate, mg/L as PO ₄			
	(if phosphate-based inhibitor used)			
	Silica, mg/L as SiO_2			
	(if silica-based inhibitor used)			
Des entry	point concentration contribute significantly to	concentrations	of load and/or a	onnor at

 Does entry point concentration contribute significantly to concentrations of lead and/or copper at the tap? Yes _____ No _____

If yes, treatment must be evaluated to reduce lead and/or copper at the source.

• * Analysis must be performed in the field or within 15 minutes from the time when the sample was collected.

• Please complete additional pages for each monitoring period conducted.

C. RAW WATER QUALITY DATA

Complete the table below for **raw water quality data on each source prior to treatment**. Only one set of parameters is necessary if two or more sources are blended prior to treatment. If sources are alternated and have the same entry point, raw water quality parameters can be measured from one blended sample containing approximately the same ratios of water from each source as used over an average one-year period.

PARAMETER	RAW WATER SOURCE ENTRY POINT #				
рН					
Alkalinity, mg/L as CaCO ₃					
Conductivity, umho @ 25 °C					
*Total Dissolved Solids, mg/L					
Calcium, mg/L as CaCO ₃					
*Hardness, mg/L as CaCO ₃					
Temperature, °C					
*Chloride, mg/L					
*Sulfate, mg/L					
Iron, mg/L					
Manganese, mg/L					

*Include if data is available

D. EXISTING TREATMENT INFORMATION

1. General:

Is treatment used? Yes ____ No ____

Indicate (check) Treatment Processes Used for Each Entry Point:

PROCESS

ENTRY POINT #

Disinfection:		 	
Chlorine Gas			
Hypochlorite (liquid chlorine)		 	
U.V. Light			
Chloramines		 	
Other		 	
<u> </u>		 	
Iron & Manganese Treatment:			
Sequestration			
Chemical Name		 	
Filtration			
Ion Exchange		 	
Other		 	
Softening:			
Ion Exchange			
Lime Addition			
Other		 	
Aeration			
Granular Activated Carbon			
Standar Hervard Carbon		 	
Surface Water Filtration:			
Coagulation			
Flocculation			
Sedimentation			
Filtration:		 	
Single Medium			
Dual Media		 	
Multi-Media		 	
List Media		 	
Recarbonation	-		
ice a conation		 	
Other			

D. EXISTING TREATMENT INFORMATION (continued)

2.

Existing Corrosion Control Treatment:	
Is corrosion treatment currently used? Yes No	
Indicate (check) Treatment Processes Used	
Phosphate Inhibitor	
Date Installed	
Type: Orthophosphate/Polyphosphate/Hexametaphosphate/Blend	
(circle one of the above)	
Brand Name	
Dosagemg/L	
Average residual in distribution system:	
Orthophosphate mg/L as PO ₄ Total Phosphate mg/L as PO ₄	
How often is residual measured?	
Silicate Inhibitor	
Date Installed	
Brand Name	
Dosage mg/L	
Average residual in distribution system mg/L	as SiO ₂
How often is residual measured?	
pH/Alkalinity Adjustment	
Date Installed	
Chemical(s) used mg/L	
Average pH in distribution system	
Average alkalinity in distribution system	mg/L as CaCO ₂
How often is pH and/or Alkalinity measured?	
Calcium Adjustment (Precipitation)	
Date Installed	
Chemical(s) used	
Dosage mg/L	
Average calcium measured at entry point	mg/L as CaCO ₃
Average calcium measured in distribution system	
Average pH measured at entry point	
Average pH measured in distribution system	
Average alkalinity at entry point	
Average alkalinity in distribution system	mg/L as CaC03
How often are parameters measured?	

D. EXISTING TREATMENT INFORMATION (continued)

3. Existing System Schematic:

Provide a flow diagram of the system indicating all sources of supply, entry points and treatment processes.

E. DISTRIBUTION SYSTEM INFORMATION

Does the distribution system contain lead services lines? Yes ____ No ____

How often is the distribution system flushed?

Indicate the approximate percentages of materials in the distribution system:

PVC	
Polyethlene	
Cast Iron	
Ductile Iron	
Galvanized	
Asbestos Cement	
Steel	
Concrete	
Lead	
Copper	
Other	

F. HISTORICAL INFORMATION

v. Use:	
	Yes No
Yes	No
	done in the past?

G. CORROSION TREATMENT CONSTRAINTS

Optimal corrosion control treatment means the corrosion control treatment that minimizes the lead and copper concentrations at user's taps while insuring that the treatment does not cause the water system to violate any national primary drinking water regulations. Please indicate using the codes below which constraints limit the feasibility of a particular corrosion treatment for your system and the severity of the constraint.

- 1. Some constraint = Potential impact but extent is uncertain.
- 2. Significant constraint = Other treatment modifications required to operate option.
- 3. Severe constraint = Additional capital improvements required to operate option.
- 4. Very severe constraint = Renders option infeasible.

Refer to Appendix A for more information on corrosion treatment constraints.

CORROSION TREATMENT

CONSTRAINT				
	pH/ALKALINITY ADJUSTMENT	CALCIUM ADJUSTMENT	INHIB PO4	SITOR SiO ₂
A. REGULATORY			101	5107
SOCs/IOCs				
SWTR: Turbidity				
Total Coliforms				
SWTR/GWDR: Disinfection				
Lead and Copper Rule				
Radionuclides				

Operational		
*		
Other		
		<u>ا</u>

CONSTRAINT

B. FUNCTIONAL

Taste & Odor

Aesthetics

Wastewater Permit

H. DESKTOP EVALUATION

Indicate (check) sources used in determining optimal corrosion control treatment recommendations:

DEP Analogous Treatment Program	
Computer Model(s)	
Specify	
Engineering Report or Consultant Study	
Literature	
Internal Study	
CCT Jar Testing	
Other	

Briefly summarize the review of the corrosion control literature, reports, studies, or computer models utilized for your evaluation. A report or summary can be attached to this form where applicable.

If your analysis includes documented analogous treatments with other systems of similar size, water chemistry and distribution system configuration, indicate using the chart below the overall performance of the treatment in minimizing lead/copper corrosion at each of those systems. If two or more systems have the same treatment and that treatment performs at the same level in each system, you may indicate this by using a number in the appropriate block.

	Very Good	Good	Poor	Adverse
pH/Alkalinity Adjustment				
Calcium Adjustment				
Inhibitors: Phosphate Based				
Silica Based				

I. RECOMMENDATIONS

Include the optimal corrosion control treatment method or combination of methods and corresponding water quality parameters being proposed. The target entry point and distribution values should be specified as minimums or ranges.

pH/Alkalinity Adjustment
Chemical(s)
Target dose, mg/L
Target entry point pH
Target distribution pH
Target entry point alkalinity, mg/L as CaCO ₃
Target distribution alkalinity, mg/L as CaCO ₃
Calcium Adjustment
Chemical(s)
Target dose, mg/L
Target entry point pH
Target distribution pH
Target entry point alkalinity, mg/L as CaCO ₃
Target distribution alkalinity, mg/L as CaCO ₃
Target distribution calcium, mg/L as CaCO ₃
Inhibitar
Inhibitor
Phosphate Based Type
Brand Name Target dose, mg/L
Target residual, mg/L as PO ₄
Silica Based
Silica Based
Brand Name Target dose, mg/L
Target residual, mg/L as SiO_2
Source Water Treatment
Ion Exchange
Reverse Osmosis
Lime Softening
Coagulation/Filtration
Target reduction in Lead/Copper after Treatment
Rationale for the proposed optimal corrosion control treatment is:
Discussed in the enclosed report

Briefly explained below _____

J. PROPOSED TREATMENT INFORMATION

Proposed System Schematic:

Provide a flow diagram of the proposed system indicating all sources or supply, entry points and treatment processes. *If available*, include feed pump information (make, model number, HP), sampling locations for process control, contact times and mixing conditions required to achieve a stable finished water.

APPENDIX A

CONSTRAINTS WORKSHEET FOR CORROSION CONTROL TREATMENT ALTERNATIVES

The LCR requires as part of the feasibility study that all constraints limiting the availability of corrosion control treatment alternatives be considered. The study should address constraints which cause a treatment alternative to adversely impact other water treatment processes or to otherwise be ineffective for the water system.

This appendix contains worksheets for each of the three basic treatment alternatives: pH/alkalinity adjustment, calcium adjustment, and corrosion inhibitors. The worksheets should assist the water supplier in identifying and evaluating the constraints acting on their systems.

Water suppliers should evaluate the impact of alternative corrosion control treatment options on compliance with existing and reasonably foreseeable future regulations. Part A of each worksheet lists the regulatory constraints. In addition, water suppliers should evaluate the functional constraints of each alternative. Part B of the worksheet includes the functional constraints which may render a corrosion control treatment alternative undesirable or infeasible.

The information in the worksheets should be used to determine the severity of a particular constraint for completion of Part G "Corrosion Treatment Constraints" of the Basic Desktop Evaluation Form.

CONSTRAINTS WORKSHEET FOR pH/ALKALINITY OR CALCIUM ADJUSTMENT TREATMENT ALTERNATIVES

Adjusting pH/Alkalinity and/or calcium for corrosion control typically consists of increasing their levels to generate favorable conditions for lead and copper passivation or calcium carbonate precipitation.

A. NATIONAL PRIMARY DRINKING WATER REGULATIONS CONSTRAINTS

Surface Water Treatment	Reduced inactivation effectiveness of free chlorine if pH
Rule	adjusted before disinfection.*
	Potential for interference with dissolved ozone measurements.
	May increase turbidity from post-filtration precipitation of
	lime, aluminum, iron, or manganese.
Groundwater Disinfection	Reduces inactivation effectiveness of free chlorine if pH
	adjusted before disinfection.*
	Potential for interference with dissolved ozone measurements.
Disinfection Byproducts	Higher THM concentrations from chlorination if pH adjusted
	before disinfection.*
	Reduced effectiveness of some coagulants for precurser
	removal if pH adjusted before coagulation.*
Coliform Rule	Potential for higher total plate counts, confluent growth, or
	presence of total coliform when chlorination is practiced.
Radionuclides	In-plant adjustments may affect removal of radioactive
	particles if precipitation techniques are used for coagulation or
	softening.
	Removal of radionuclides during softening may be linked to
	the degree of softening. Modifying softening practices to
	achieve corrosion control could interfere with removals.

<u>RULE</u>

CONSTRAINT

*Unless operating restraints dictate otherwise, the optimum location for pH adjustment is after disinfection and near the entrance to the distribution system. If quicklime is used to adjust pH, for example, it needs to be added prior to filtration so inert material does not accumulate in the clearwell or enter the distribution system.

CONSTRAINTS WORKSHEET FOR pH/ALKALINITY OR CALCIUM ADJUSTMENT TREATMENT ALTERNATIVES (continued)

B. FUNCTIONAL CONSTRAINTS

Increased potential for post-filter precipitation may give undesirable levels of aluminum, iron, or manganese.

Process optimization is essential. Additional controls, chemical feed equipment, and operator attention may be required.

Multiple entry points will require ph/Alkalinity adjustment at each entry location. Differing water qualities from multiple sources will require adjusting chemical doses to match the source.

The use of sodium-based chemicals for alkalinity or pH adjustments should be evaluated with regard to the total sodium levels acceptable in the finished water.

Users with specific water quality needs, such as health care facilities, should be advised of any changes in treatment.

Excessive calcium carbonate precipitation may produce "white water" problems in portions of the distribution system.

It may be difficult to produce an acceptable coating of calcium carbonate on interior piping for large distribution systems. High CCPP levels may eventually lead to reduced hydraulic capacities in transmission lines near the treatment facility while low CCPP values may not provide adequate corrosion protection in the extremities of the distribution system.

CONSTRAINTS WORKSHEET FOR INHIBITOR TREATMENT ALTERNATIVES

Corrosion inhibitors can cause passivation of lead and copper by the interaction of the inhibitor and metal components of the piping system.

A. NATIONAL PRIMARY DRINKING WATER REGULATIONS CONSTRAINTS

Surface Water Treatment	The application of phosphate-based inhibitors to systems with
Rule	existing corrosion byproducts can result in the depletion of
	disinfectant residuals within the distribution system.
	Additionally, under certain conditions phosphate-based
	inhibitors may stimulate biofilms in the distribution system.
Groundwater Disinfection	Same as above.
Disinfection Byproducts	No apparent effects.
Coliform Rule	If corrosion byproducts are released after the application of
	inhibitors, coliforms may be detected more frequently and
	confluent growth is more likely.
Radionuclides	No apparent effects.

RULE

<u>CONSTRAINT</u>

B. FUNCTIONAL CONSTRAINTS

Potential post-filtration precipitation of aluminum.

Consumer complaints regarding red water, dirty water, color, and sediment may result from the action of the inhibitor on existing corrosion byproducts within the distribution system.

Multiple entry points will require multiple chemical feed systems.

The use of sodium-based inhibitors should be evaluated with regard to the total sodium levels acceptable in the finished water.

The use of zinc orthophosphate may present problems for wastewater facilities with zinc or phosphorus limits in their NPDES permits.

Users with specific water quality needs, such as health care facilities, should be advised or any treatment changes.

RELATIONAL BEHAVIOR OF CHANGING WATER QUALITY CONDITIONS FOR CORROSION CONTROL TREATMENT AND OTHER WATER QUALITY/TREATMENT OBJECTIVES

WATER QUALITY CHANGE

IMPACT

Non-Softening WTPS:	- Increase in TTHM formation
pH Increase -	- Decrease in haloacetic acid formation.
After Filtration	- Increase in final turbidity when lime is used
And I httation	- Reduced disinfection efficacy.
	-
	- Post-filtration precipitation of manganese.
Softening and Non-Softening	- Reduced disinfection by-products precurser removal when
WTPs:	alum coagulation is practiced.
pH Increase -	- Increase in TTHM formation.
Before Filtration	- Decrease in haloacetic acid formation.
	- Reduced disinfection efficacy unless at pH levels above 9.0.
	- Increased soluble aluminum levels when alum coagulation is practiced.
	- Increased removal of manganese.
	- Increased encrustation of filter media when excess calcium carbonate available.
	- Excess precipitation of calcium carbonate when available in
	pipe network near WTP.
Softening WTPs:	- Decrease in TTHM formation.
pH Decrease -	- Increase in haloacetic acid formation.
Before filtration	- Reduced encrustation of filter media.
	- Reduced soluble aluminum levels when alum is added during
	softening.
Alkalinity Increase	- Increase ozone demand for disinfection.
Alkalinity Decrease	- At very low levels, reduced coagulation performance when
	using alum.
Calcium Increase	- Increased encrustation of filter media when excess calcium
	carbonate available.
	- Excess precipitation of calcium carbonate when available in
	pipe network near WTP.
	- Increase scavenging of phosphate inhibitors used for either
	corrosion control or chelation.
	- If after filtration, finished water turbidity increases.
Calaium Dearange Softening	
Calcium Decrease Softening WTPS	- Prevent excess precipitation of calcium carbonate in pipe network in WTP.
Phosphate Increase	- Stripping of existing corrosion byproducts in the distribution
	system causing aesthetic quality degradation and increasing
	HPC levels initially due to biofilm disturbances.
Silicate Increase	- May reduce useful life of domestic hot water heaters due to
	•
	"glassification"; silicates precipitate rapidly at higher temperatures.

This and related environmental information are available electronically via Internet. For more information, visit us through PA PowerPort at http://www.state.pa.us or visit DEP directly at http://www.dep.state.pa.us (choose directLINK "drinking water publications").

www.GreenWorks.tv - A web space dedicated to helping you learn how to protect and improve the environment. The site features the largest collection of environmental videos available on the Internet and is produced by the nonprofit Environmental Fund for Pennsylvania, with financial support from the Pennsylvania Department of Environmental Protection, 877-PA-GREEN.

An Equal Opportunity Employer

